Коммерческие системы кондиционирования

Ошибки при монтаже

LG Electronics

AC Division

- Медный трубопровод
 - ◆ Проблема
 - Неровные края отрезанных труб могут привести в дальнейшем к проблемам с герметич ностью

Ошибка

Приспособление для отрезания медных трубок

Правильно

- ♦ Вывод
- Необходимо использовать только специальное приспособления для резки медных тр убок

■ Изоляция трубопровода

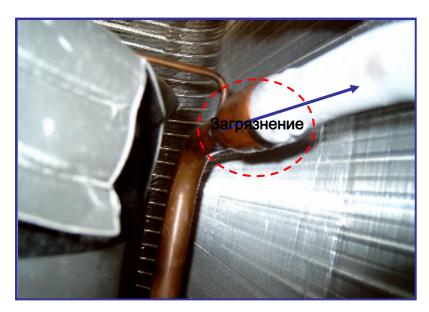
- ◆ Проблема
 - Влажность и частицы, такие как пыль и песок, могут засорить трубки
 - Трубки могут сломаться около подвижных объектов

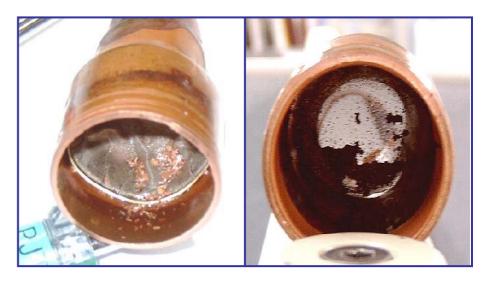
Неудачно

Правильно

- ♦ Вывод
 - Необходимо надеть на трубку уплотнительный колпачок

- Формирование окислов
 - ◆ Проблема
 - Забивается фильтр или LEV (расширительный клапан)


Неудачно



Правильно

- ◆ Выводы
 - Пайку трубопровода необходимо проводить с использованием азота (Азот инертный газ, предотвращающий медное окисление)

- Загрязнение внутри трубок
 - ◆ Проблема
 - Загрязнение может заблокировать трубку, что приведет к ее обмерзанию

Актуальный пример

Неудачно

- ♦ Выводы
- Необходимо внимательно следить при установке, для предотвращения попадания грязи внутрь с истемы
- Вакуумная сушка должна выполняться при соответствующем уровне вакуума

■ Расположение Y-разветвителя

◆ Проблема

• Шум хладагента

• Недостаток мощности некоторых внутренних блоков, из-за несбалансированного рас

пределения

Неудачно

Вертикально (О)

Горизонтально (О)

Выводы

• Место соединения должны иметь отклонение +/- 10 от горизонтальной оси, как показано выше.

■ Подвешивание трубок

- ◆ Проблема
 - Возможно появление шума

Неудачно

Правильно

◆ Выводы

- При подвешивании трубок избегайте провисания
- Закреплять подвешенные трубки необходимо через каждые 1.5 м

- Кронштейн для подвешивание трубок
 - ◆ Проблема
 - Возможно появление шума

Неудачно Правильно Правильно

- ◆ Выводы
 - При подвешивании трубок избегайте провисания

■ Изоляция трубок

◆ Проблема

- Вода может конденсироваться на трубках и капать на пол
- Изоляционный материал может быть поврежден высокой температурой

Неудачно

Неудачно

◆ Выводы

• Изолируйте трубки соответствующим материалом с достаточной толщиной

- Залом трубок
 - ◆ Проблема
 - Нарушено движение хладагента, что вызывает снижение производительности

Ошибка

Ошибка

◆ Выводы

- Необходимо проверить трубки после установки
- По возможности уменьшить количество изгибов и делать радиусы изгибов как можно больше

■ Проверка протечек

◆ Проблема

• Возможны протечки хладагента

Ошибка **(10.5кгс/см²)**

Правильно (28.7 кгс/см 2)

♦ Выводы

• Проверка утечки выполняется под высоким давлением 28 кг*сила/см ²

■ Вакууммирование

◆ Проблема

• В трубках может остаться влага, что приведет в утечкам, если не делать вакууммирование

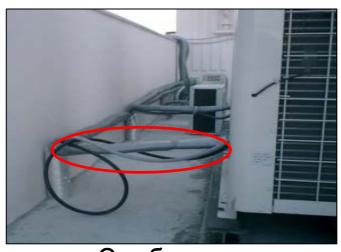
◆ Выводы

- Используйте подходящий вакуумный насос
- Вакуумируте до 5 торр (1 бар = 750.06 торр)

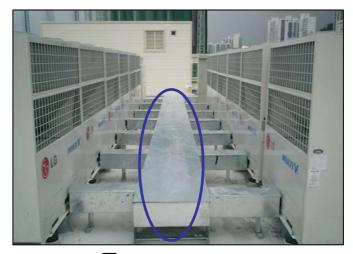
■ Кожух трубок

- ◆ Проблема
 - Дренажные трубки не смогут выводить влагу.
 - Вода может протекать.

Ошибка



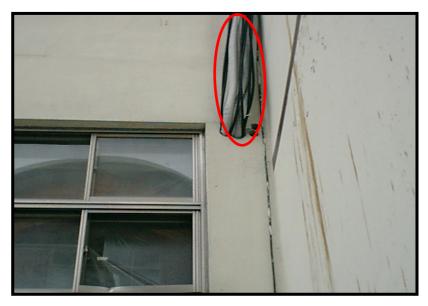
Правильно


◆ Выводы

• Трубки и линии управления необходимо убирать в кожух с противокорозийным покрытием, таким как оцинкованное железо

- Кожухи трубок
 - ◆ Проблема
 - Трубки могут быть повреждены или погнуты
 - Неэстетичный внешний вид

Ошибка



Правильно

◆ Выводы

• Трубки и линии управления необходимо убирать в кожух с противокорозийным покрытием, таким как оцинкованное железо

- Патрубок
 - ◆ Проблема
 - Трубки могут быть повреждены или погнуты
 - Неэстетичный внешний вид

Ошибка

Правильно

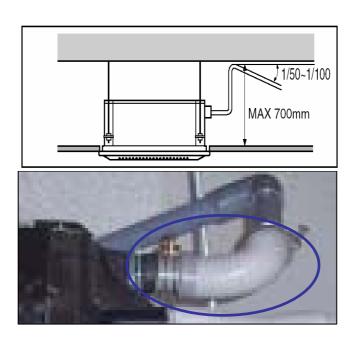
- ◆ Выводы
 - Внутри зданий трубки необходимо убирать в кожухи

- Размеры трубок
 - ◆ Проблема
 - Сложно осуществить дренаж.
 - Вода может протекать.

Ошибка

Правильно

- Выводы
 - Используйте рекомендованные в инструкции диаметры трубок


■ Наклон трубок

◆ Проблема

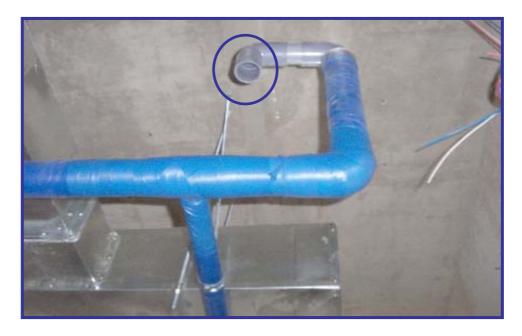
• Вода не может течь без достаточного уклона дренажных трубок

Ошибка

Правильно

- ◆ Выводы
- Поддерживайте наклон дренажных трубок 1/50 ~ 1/100

- Изоляция трубок
 - ◆ Проблема
 - Вода может конденсироваться на трубках


Ошибка

Правильно

- ◆ Выводы
 - Дренажные трубки необходимо изолировать

- Отверстие для воздуха
 - ◆ Проблема
 - Вода не может вытечь

Правильно

- ◆ Выводы
 - Необходимо обеспечить выход воздуха

■ Изгиб воздуховода

- ◆ Проблема
 - Воздуховод можно сильно изогнуть и сломать
 - Расход воздуха уменьшается, повышается шум

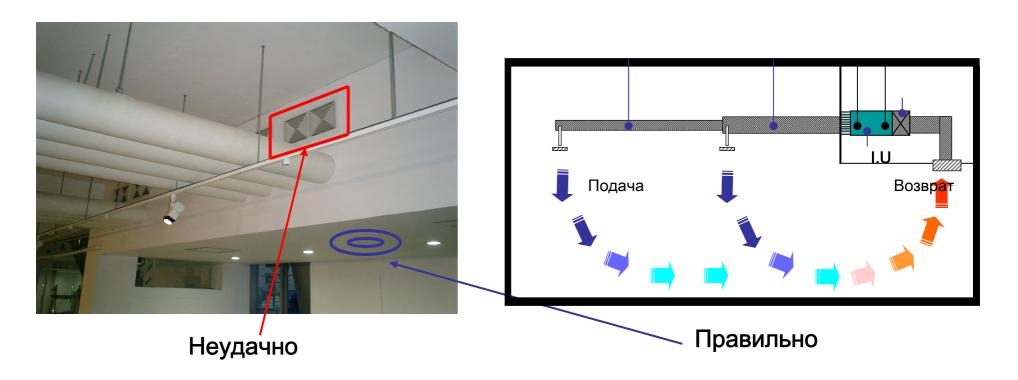
Неудачно

Правильно

♦ Выводы

• Устанавливайте воздуховод с правильным сечением

- Кронштейн воздуховода
 - ◆ Проблема
 - Возможно появление шума


Неудачно

Правильно

- Выводы
 - Подвешивая воздуховод, избегайте лишних изгибов

- Циркуляция воздуха
 - ◆ Проблема
 - Не организована циркуляция воздуха

- Выводы
 - Устанавливайте воздуховоды с учетом циркуляции воздуха

- Основание внешнего блока
 - ◆ Проблема
 - Внешний блок может вибрировать и издавать раздражающие шумы

Правильно

- ♦ Выводы
- Для предотвращения появления посторонних шумов, внешний блок необходимо устана вливать на резиновую прокладку (10мм), Н-балку (150 мм) и бетонное основание (200 мм)

- Поток воздуха
 - ◆ Проблема
 - Ограничение воздушного потока вокруг внешних блоков.

Неудачно

Правильно

- ◆ Выводы
 - Достаточное расстояние показано в инструкции по установке

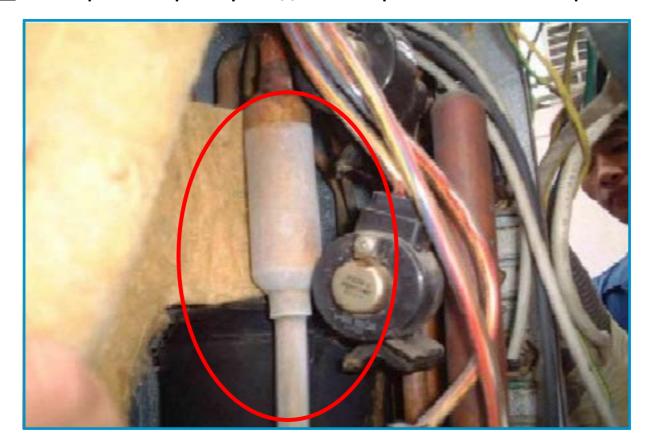
- Защита линии питания
 - ◆ Проблема
 - Поврежденные провода могут привести к ошибкам управления или короткому замыканию


Неудачно

Неудачно

- ◆ Выводы
 - Защищайте провода с помощью рукавов или кожухов

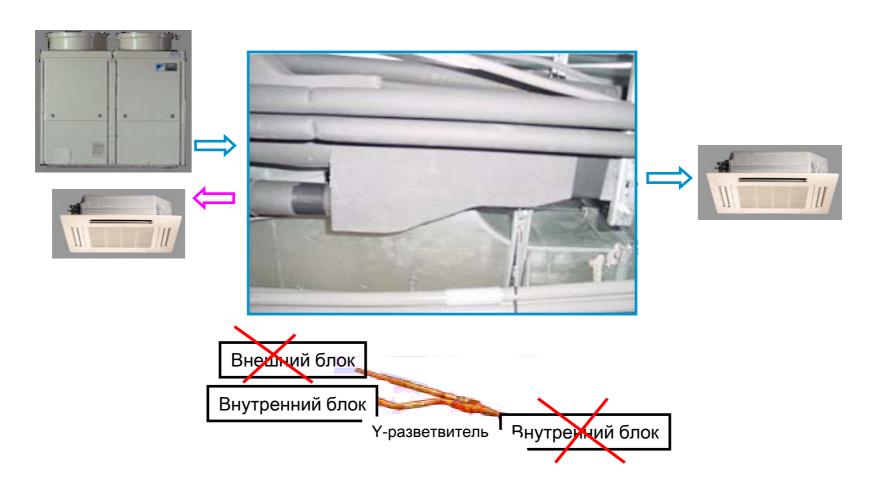
- Разделение проводов питания и управления
 - ◆ Проблема
 - Происходят ошибки или сбои в работе

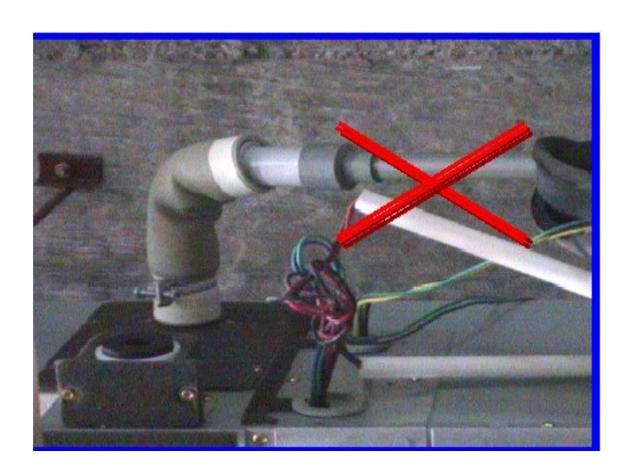


Ток проходящий через линию		Расстояние
100В и более	10A	300мм
	50A	500мм
	100A	1000мм
	100А и более	1500мм

Правильно

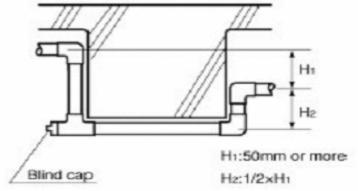
- ◆ Выводы
- В таблице показаны рекомендуемые расстояния между линиями управления и пита ния, которые расположены рядом.

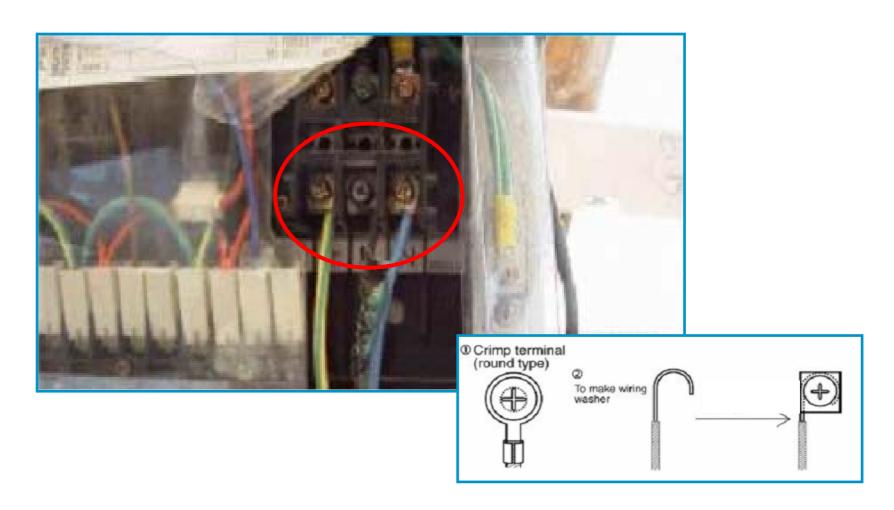

- Инородные материалы в трубках
 - Проблема: Засоренный фильтр создает изморозь на своей поверхности

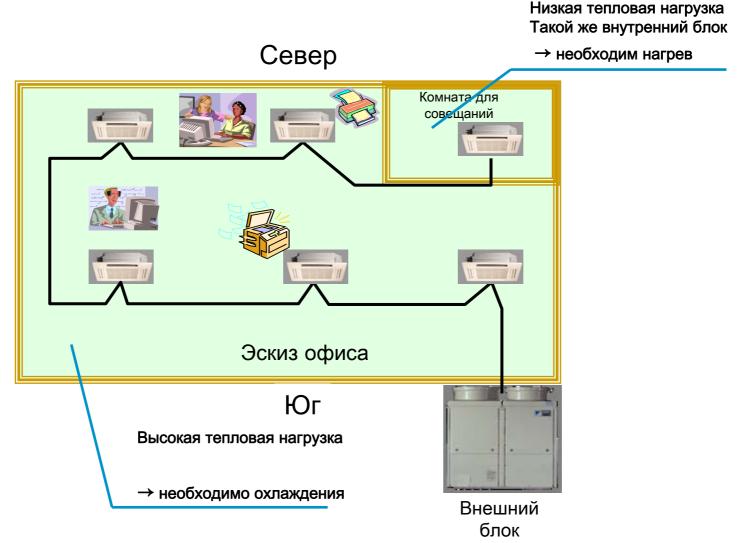

Выводы

• Необходимо следить за попаданием посторонних частиц в трубы при монтаже

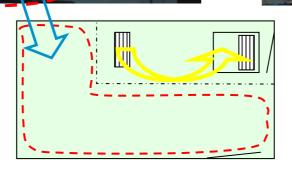
- Неправильное подключение Y-разветвителя
 - ◆ Проблема
 - Несбалансированный поток хладагента создает технические и шумовые проблемы


- Уменьшение диаметра дренажных линий
 - Проблема: Вода не может равномерно вытекать через дренажные трубы


- Отсутствие заглушек
 - Проблема : Пыль и мусор засоряют дренажный канал


- ♦ Вывод
- Установите заглушки (для U-образных дренажных линий)

- Плохой контакт проводов
 - Проблема: Затянутый болт держит только изоляцию



- Несбалансированная тепловая нагрузка
 - ◆ <u>Проблема</u>: Комнате для совещаний необходим нагрев, а другим комнатам охлаждение

- Несбалансированная температура и плохое охлаждение
 - ◆ Проблема
 - Наибольшая неохлаждаемая площадь
- Большинство охлажденных воздушных по токов уходят обратно пуска воздуха Решетка всасывания воздуха

Решетка впуска воздуха Решетка всасывания возд

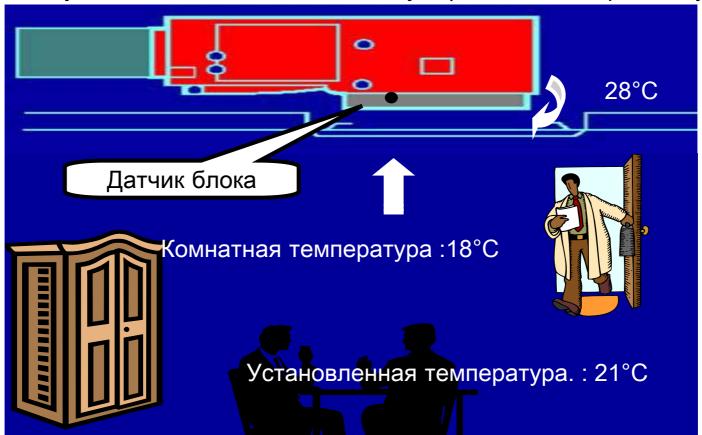
- Комнатная температура не снижается
 - Проблема: Забор и подача воздуха в разных помещениях

Решетка впуска воздуха в комнату

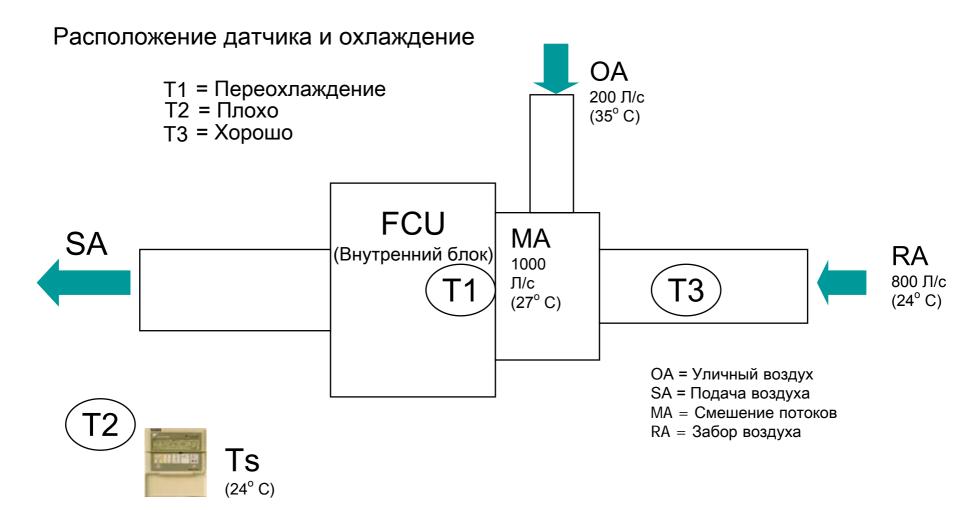
Впускное воздушное устройство в подвале

- Комнатная температура не снижается
 - Проблема: Постоянный приток теплого воздуха

Открытый навесной потолок


- Уменьшилась охлаждающая способность
 - Проблема: Внешние блоки недостаточно охлаждаются

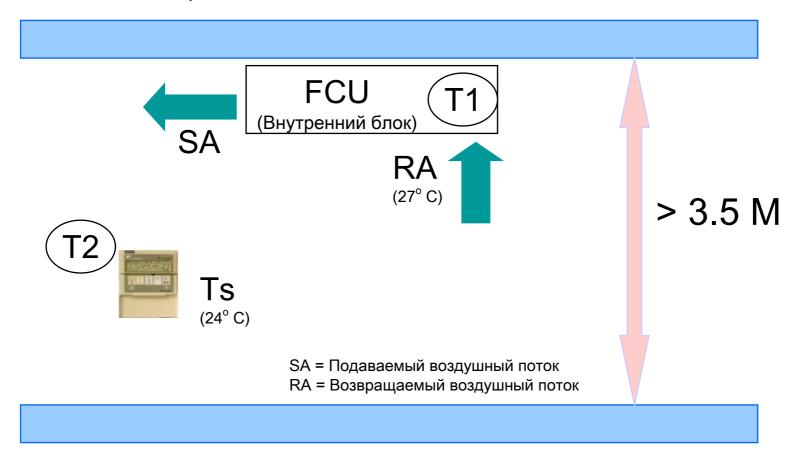
- Несоответствие установленной и комнатной температур
 - Проблема : Воздушный поток дует на датчик



- Несоответствие установленной и комнатной температур
 - ◆ Проблема : Воздушный поток дует на датчик
 - в случае свободного всасывания воздуха (Без всасывающего воздуховода)

- ♦ Вывод : Расположите трубопровод возвратного воздуха
- Подключите удаленный датчик

■ Расположение датчика

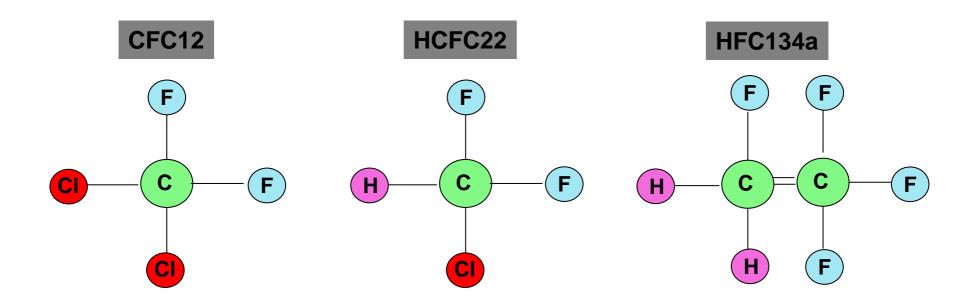


■ Расположение датчика при высоких потолках

Расположение датчика и охлаждение

Т1 = Переохлаждение

Т2 = Хорошо



Новые хладагенты

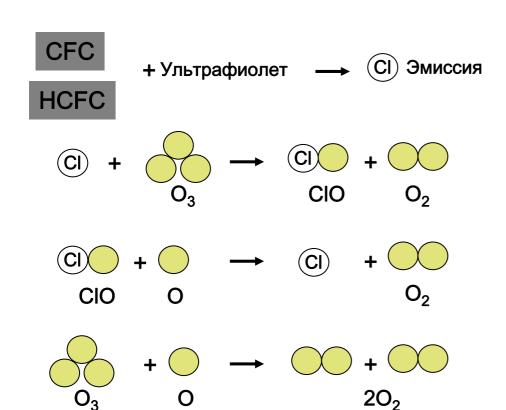
LG Electronics AC Division

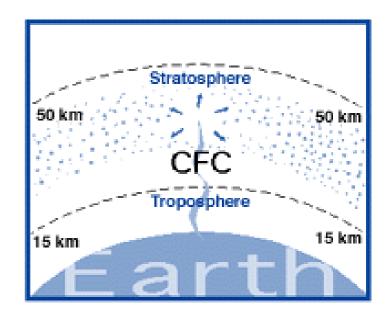
Хладагент и истощение озонового слоя

CFC (Хлор-Фтор-Углерод)

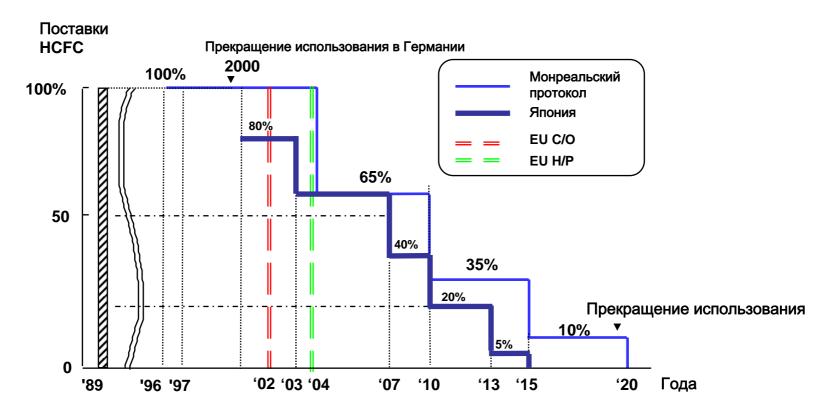
HCFC (Гидро-Хлор-Фтор-Углерод)

HFC (Гидро-Фтор-Углерод)


Механизм истощения озонового слоя


Нижний слой атмосферы тропосфера

→ Устойчива


Озоновый слой

- Разрушается

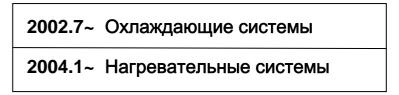
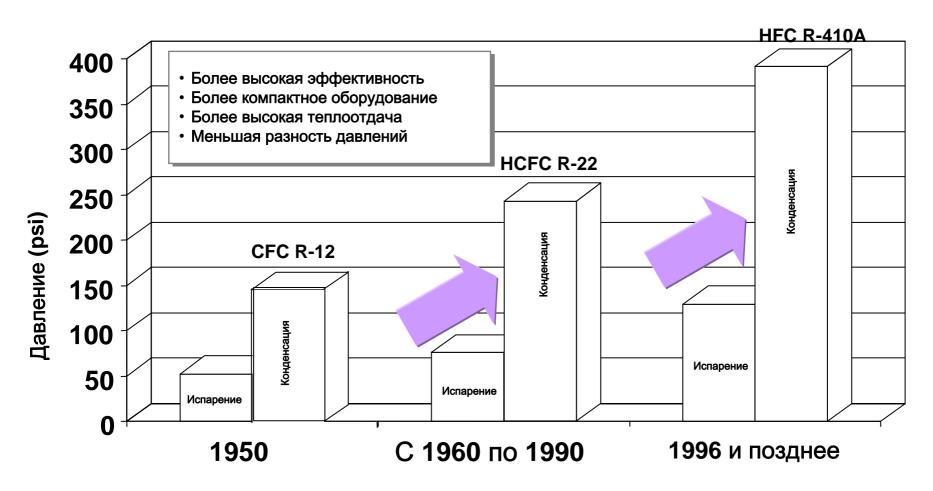


График прекращения использования хладагентов типа **HCFC**


<u>График прекращения использования хладагентов типа HCFC в Европе</u>

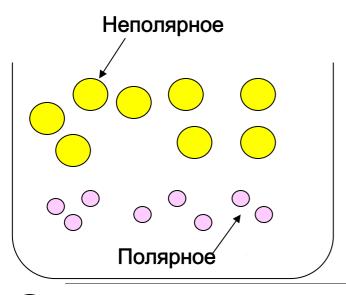
Характеристики новых фреонов

	R22	R407C	R410A
Хладагент	CHCIF2	CH2F2 / CHF2CF3 / CF3CH2F	CH2F2 / CHF2CF3
Молекулярный вес	86.5	86.2	72.6
Точка кипения	-40.8	-43.7	-52.7
Критическая точка	96	87.3	72.5
ρl(кг/м³)	1208	1171	1107
ρν(κг/м ³)	38.3	37.7	53.8
Давление (МПа),50°С	1.94	2.11	3.06
Эффективность (%)	100	98	140
COP (%)	100	95	92

Изменение рабочего давления

Давление испарения при 45° F и давление конденсации при 115° F

Влияние остаточных веществ на работу системы


Остаточные вещества	Эффект	Влияние на работу системы
Влага	•Гидролиз воды с маслом • Формирование льда	•Компрессор сгорает из-за плохой изоляции •Происходит коррозия металла •Капиллярные трубки блокируются льдом •Компрессор сгорает из-за плохой циркуляции хладагента
Масло	•Загрязнение компрессорного масла	•Происходит коррозия металла •Капиллярные трубки блокируются растворенными веществами
Нераство- ряемое загрязнение	•Загрязнение капиллярных трубок	•Компрессор сгорает из-за плохой циркуляции хладагента
Окружающая среда	•Окисление компрессорного масла •Падение производительности теплообменника	•Происходит коррозия металла •Капиллярные трубки блокируются растворенными веществами •Нагрев или охлаждение не происходят

Почему нужно менять компрессорное масло?

Смешивание с маслом

С минеральным маслом

С новым маслом (РОЕ).

Полярное

: Остаточное масло (Минеральное)

: Новое масло (РОЕ)

: Хладагент (HFC-410A / 407C)

: Хладагент (HFC-410A / 407C)

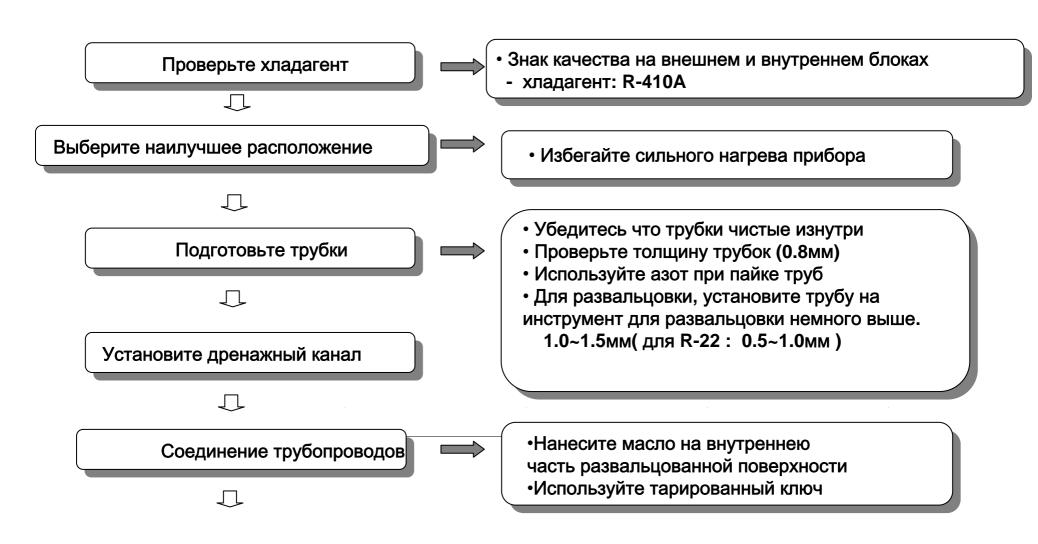
Новый хладагент R-410A (сравнение с R-22)

1. Ключевые особенности R-410A

- 1) Разные компрессорные масла
- R-410A(синтетические) / R-22(минеральное)
- Не смешивать масла
- -Не использовать трубы, которые использовались ранее с минеральным маслом
 - 3) Смесь двух хладагентов
- R-410A(R32:R125=50:50wt%)/R-22(100%)
- Не смешивать хладагенты
- Заправка в жидком агрегатном состоянии

2) Поглощение влаги

- Компрессорное масло имеет высокую степень абсорбции

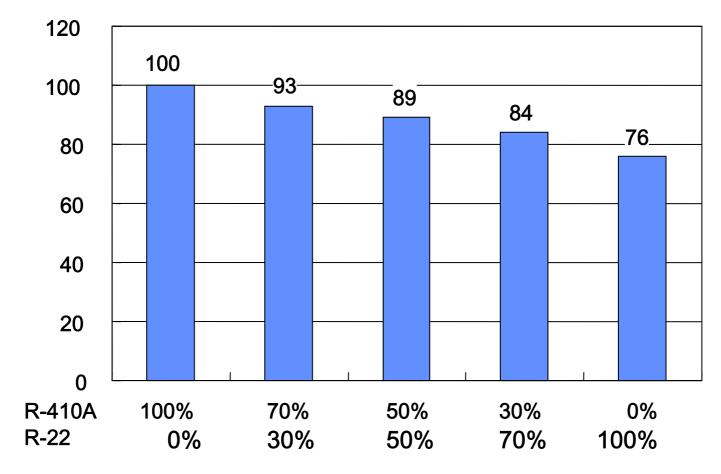

- 4) Высокое давление
- В 1.6 раза выше чем у R-22
- Проверьте диаметр трубок
- -Ф6.35(жидкость) и Ф9.52(газ) :0.8мм

2. Сравнение хладагентов

	Точка	Давление паров (25°C)	Плотность паров (25°C)	ODP*	
	кипения (°C)	(kg f/cm²)	(kg/m³)		
R-410A	-51.4	15.9	64	0	
R-22	-40.8	9.6	44.4	0.055	

ODP*: Потенциал Истощения Озонового Слоя

Процесс установки и проверки при сервисном обслуживании



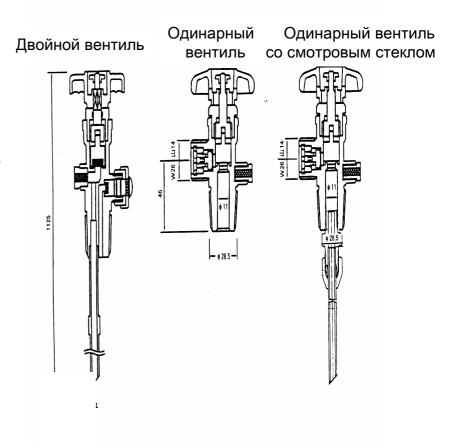
•При проведении сервисного обслуживания замените фильтр-осушитель на новый, проверьте наличие утечек, и избегайте длительного нагрева трубок при сварке.

Изменение производительности при смешивании R-22 и R-410A

Сплит-система:12,000 БТЕ/ч

Вакуумирование системы.

Вакуумирование удаляет из системы остаточные неконденсирующиеся газы. Газы удаляются быстро, но удаление влаги займет больше времени. Синтетические масла очень гигроскопичны и формируют кислоту при сочетании влаги с хладагентом в условиях повышения температуры.


Основные операции

- * Выберите соответствующий вакуумный насос и убедитесь что газ удален из системы.
- * Пространство вокруг насоса должно быть достаточно большим для вентиляции выпущенных из системы газов и масляных паров.
- * Подключите вакуумный насос к системе и помощью манометрического коллектора
- * Вакуумируйте систему, когда давление достигнет -500ммРтСт, продолжайте использовать выкуумный насос не менее 30 минут, для удаления влаги, оставшейся в системе или выделившейся из масла
- -Чем больше время и температура при которых происходит процесс, тем лучше удалиться влага из системы
- * Для отключения насоса, закройте клапаны системы и откройте клапан насоса, или отсоедините шланг насоса. После этого, насос можно выключить
- * Замена масла вакуумного насоса:
- Каждые 20-30 часов работы, необходимо менять масло вакуумного насоса. (оно набирает влагу или загрязняется)
- Записываете каждое использование вакуумного насоса, время его использования и смену масла.

Заправка хладагента

При заправки нового хладагента в систему необходимо использовать нагнетательный порт.

- * Установите емкость с хладагентом на весы и подключите ее к системе, используя коллектор.
- * Убедитесь что система отвакуумирована
- * При необходимости продуйте шланг и коллектор.
- * Заправьте жидкий хладагент в отключенную систему через порт линии нагнетания, медленно открыв вентиль емкости с хладагентом.
- * Помните, что фреон в газообразном состоянии быстро испаряется.

1. Система очистки воздуха / 1-1. Введение

Назначение: Миллионы людей страдают от аллергий или синдромов обостряющихся

присутствии пыльцы, пыли, сажи, бактерий, других частиц и вредных газов в

воздухе.

Преимущества: Для гарантирования безопасности и здоровых условий жизни, эти

частицы должны быть отфильтрованы. Для этого предназначена система

очистки воздуха.

Применение: Воздушные кондиционеры, воздухоочистители, системы вентиляции,

осушители и другие.

<u>Тип</u>: Этот фильтр в основном применяется в кондиционерах **LG**.

▶ Плазменная система очистки воздуха

► Нано плазменная система <u>очистки воздуха</u>

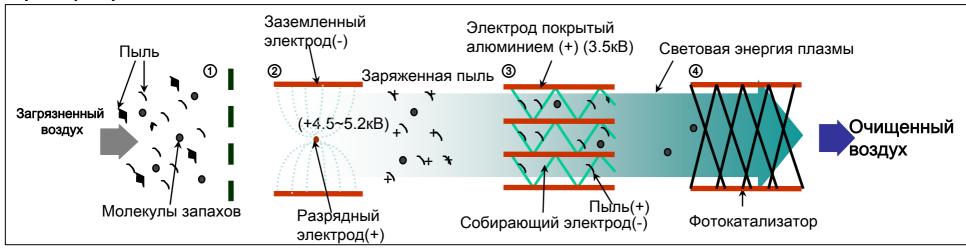
Сравнение фильтров

	Обычный	Плазменный	Нано плазменный
			Плазма и
Принцип действия		Плазма	нанотехнологии
Уменьшение			
пылеобразования	\triangle	$\stackrel{\wedge}{\not\sim}$	$\stackrel{\star}{\nearrow}$
Дезодорация	\triangle	\bigcirc	$\stackrel{\sim}{\mathcal{M}}$
Срок службы	Регулярная	Постоянный	Постоянный
	замена	(моющийся)	(моющийся)
		Бытовые и	Бытовые и
Применяется в моделях	Все модели	коммерческие	коммерческие
		системы,	системы,

☆:Высокая О:Средняя △:Низкая

1. Система очистки воздуха / 1-2. Плазменный фильтр

Плазменный фильтр: Плазменная система очистки воздуха в основном используется в кондиционерах.

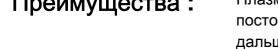

Плазменная система очистки воздуха работает на принципе плазменного генератора.

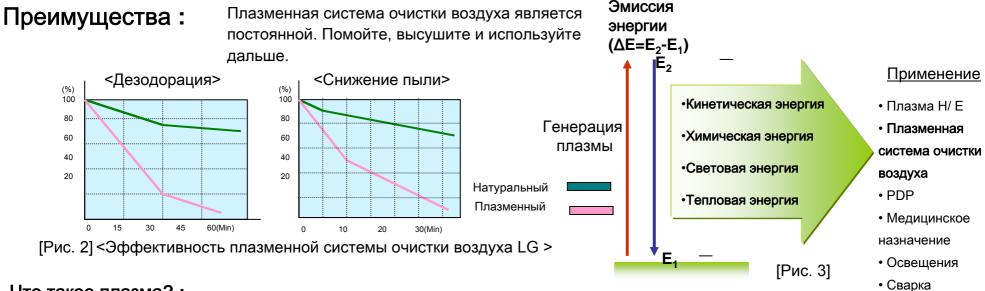
Возможности

Может удалять из воздуха частицы размером 0.1 мкм - плесень, вирусы, бактерии и

другие.

Принцип работы:


[Рис. 1]


- 1) Пред-фильтр
- Фильтрует пыль большого размера, волосы и мех
- 2) Плазменный ионизатор
- Состоит из заземленного и разрядного электродов.
- Когда между заземленным электродом и пластиной электрода подается 4.5кВ~5.2кВ, создается (+)ион и электрон. Это состояние называется плазмой.
- Электрон сталкивается с молекулой газа и распадаются.
- (+)ион сталкивается с частицами пыли, и заряжает их положительно.
- 3) Фильтр пыли
- Заряженные частицы пыли собираются на (-) электроде

1. Система очистки воздуха / 1-2. Плазменный фильтр

4) Дезодорация

- •Это сетчатое покрытие с фото-катализатором
- •Особенностью фото-катализатор является способность возбуждать и разлагать органические материалы которые осаждаются на поверхности при получении световой энергии
- •Молекулы запахов не могут быть удалены в блоке ионизированной плазмы, но могут быть разложены и удалены фото-энергией генерируемой плазмой.
- ☞ По такому принципу работает плазменный фильтр, но блоки могут меняться в зависимости от модели. В особенности пылеуловители устанавливаются только на напольных моделях и воздухоочистителях.

Что такое плазма?:

Плазма - четвертое состояние веществ. В этом состоянии присутствуют ионы с высокой энергией и электроны. Электроны и ионы излучают энергию, это позволяет им переходить в другое состояние. Плазменная технология может быть применена для разных целей. (Рис. 3)

Все материалы с нестабильной высокой энергией, имеют свойство возвращаться в нормальное состояние.

1. Система очистки воздуха / 1-3. Нано плазменный фильтр

Нано-плазменная система фильтрации воздуха:

Система нано плазменной фильтрации воздуха была разработана LG для применения в кондиционерах. Эта система использует нано углеродную технологию для эффективной дезодорации, по сравнению с обычными фильтрами, которые используют фильтр с активированным углеродом для дезодорации.

Нано плазменная очистка работает также как и плазменная очистка, но дополнительно имеется фильтр NCB (Нано углеродные молекулы), предназначенной для улучшения дезодорации

Фильтр NCB так же можно мыть.

Он так же постоянный (долгий срок службы).

Фильтрация NCB

Активная углеродная фильтрация заменена на фильтрацию молекулами нано углерода.

Этот продукт разработан LG Household и Health Care, и является первым в мире продуктом использующим нано технологию. (Рис. 5)

Состояние нано технологии контролирует размер пор, форму и обеспечивает наилучшее дезодорирование.

Зона Mesopore в LG нано углеродных молекулах в несколько раз больше чем активированный углерод. Таким образом наличие катализатора в каждой поре, улучшает характеристики нано углеродных молекул, которые в 10 раз эффективнее, чем активированный углерод. (Рис. 6).

[Рис. 5] Фильтр NCB

[Рис. 6] : NCB

[|]200 – 500 нм

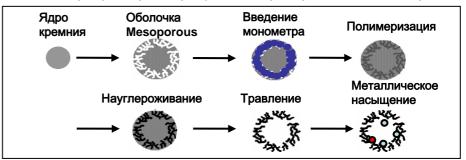
2 нм mesopore

Катализатор для

разложения

malodor

Неприятный запах


1. Система очистки воздуха / 1-3. Нано плазменный фильтр

NCB (Нано углеродные молекулы) :

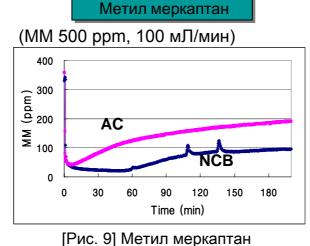
NCB это модель с нано структурами кремния, процесс работы изображен на Рис. 7.

Когда кремний и полимер нагрет, кремний вылетает из молекулы и образуется множество отверстий на поверхности полимера. Это NCB.

[Рис. 7] <Процесс фильтрации нано углеродными молекулами>

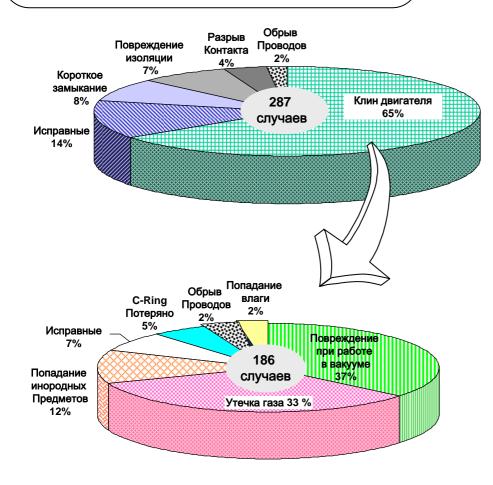
Преимущества:

По сравнению с активированным углеродом, он эффективнее при дезодорировании, так как в NCB имеются отверстия нано размера на поверхности и удерживает молекулы запаха малого размера.


•В 10 раз эффективнее в случае аммиака(Рис. 8)

•В 10 раз эффективнее в случае метил меркаптана (Рис. 9)

time (min)


[Рис. 8] Аммиак

Неисправности компрессора - (1/3)

Дата: Январь-июль 2000 года (внутренний рынок).

Анализ дефектного компрессора

Винтовой компрессор

Ротационный компрессор

Неисправности компрессора - (2/3)

Неисправность

Параметры неисправности

о: исправно, х: неисправно

Процесс развития неисправности

Утечка газа

Двигатель	Механические части	Масло
0	0	×
0	×	×
×	×	×

- (1)Утечка фреона (Стороны низкого и высокого давления)
- (2) Температура поднимается => Масло окисляется
- (3) Плохая смазка приводит к клину двигателя
- (4) Двигатель сгорает

Сколы, заусенцы

- (1) Инородные материалы попадают в движущиеся части.
- (2) Из-за попадания инородных предметов снашиваются подшипники и цилиндры.
- (3) Возникает скопление порошкообразных инородных материалов, что ускоряет снашивание движущихся частей.
- (4) Систему заклинивает
- (5) Двигатель перегревается => Плавится электрическая изоляция.

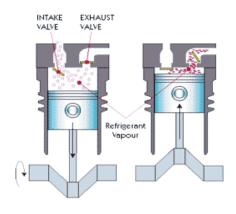
Неисправности компрессора - (3/3)

Неисправность

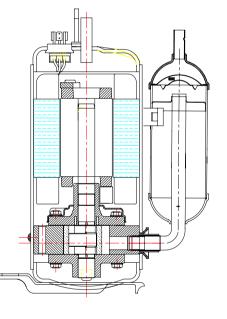
Параметры неисправности

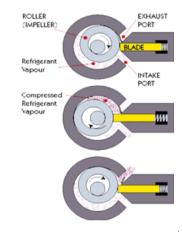
о: исправно, х: неисправно

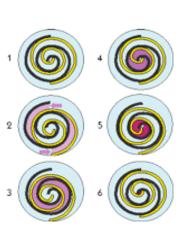
Работа при вакууме (Винтовые компрессоры)


	Двигатель	вигатель Механические части	
	×	0	×
	0	×	×
	×	×	×
- 1			


Процесс развития неисправности


Случай 1:(1) Работа с закрытым вентилем (Сторона низкого давления)


- (2) Выпуск масла в систему кондиционера.
- (3) Масло не возвращается из системы.
- (4) Уменьшается количество масла, смазывающего движущиеся части.
- (5) Из-за плохой смазки в системе появляется порошкообразные инородные материалы.
- (6) Это приводит к нагреву системы до высоких температур.
- (7) Изоляция плавится и забивают систему
- Случай 2:(1) Работа с закрытым вентилем (Сторона низкого давления)
 - (2) На стороне низкого давления образуется вакуум.
 - (3) Повреждение электрической изоляции.
 - (4) Происходит короткое замыкание => Контакты плавятся и обрываются.


Компрессор Описание работы



FX28QG12CC(60Hz 3HP 기본모델)

141

Достоинства и недостатки различных типов компрессоров

1) Поршневой компрессор

Достоинства

- Высокая эффективность выполнения широкого круга задач
- Благодаря низкой стоимости, подходит для бытовых и коммерческих систем
- Компрессор может работать как в прямом, так и в обратном направлении
 Трехфазное подключение.
 Неправильное подсоединение невозможно
- Проверенная эффективность до 20 тонн
- Кожух компрессора содержит газ с низкой температурой под низким давлением

Недостатки

- Уровень шума несравнимо выше, чем у винтового компрессора
- Больший вес по сравнению с ротационным и винтовым компрессорами
- Больший размер по сравнению с ротационным и винтовым компрессорами
- Поршневой компрессор состоит из большего количества деталей по сравнению
- с ротационным и винтовым компрессорами

2) Роторный компрессор

Достоинства

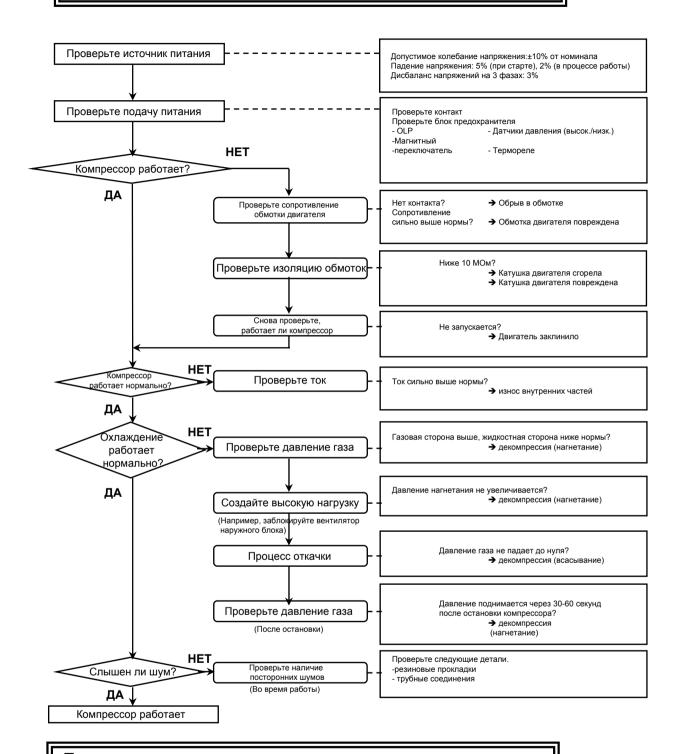
- Высокая эффективность.
- Благодаря низкой стоимости, подходит для использования в кондиционерах до 18000 БТЕ/ч.
- Меньший размер по сравнению с винтовым и поршневым компрессорами.
- Меньший вес по сравнению с винтовым и поршневым компрессорами.
- Проверенная эффективность работы в осушителях, кондиционерах и компактных агрегатах.

Недостатки

- Необходима высокая точность размеров при изготовлении
- 3-5% массового расхода используется на компрессорную смазку Возможны проблемы с возвратом масла
- Высокая вибрация компрессора
- Кожух компрессора содержит газ с высокой температурой под высоким давлением
 - > Высокая температура и высокое давление газа хладагента влияет на электропитание
 - > Компрессор сильно нагревается
- Необходимо использовать внешний аккумулятор на стороне всасывания
- Компрессор работает только в одном направлении

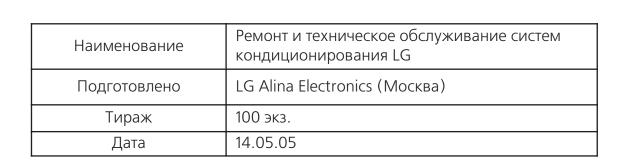
При подключении трехфазного компрессора необходимо соблюдать полярность

2) Винтовой компрессор


Достоинства

- Отличная эффективность свыше 5 тонн
- Наименее шумная модель компрессора
- Низкая вибрация компрессора
- Не используется клапан на нагнетании
- Допустимо попадание жидкого хладагента через всасывающую магистраль
- Корпус компрессора имеет меньшие габаритные размеры по сравнению с аналогичной поршневой моделью
- Масса компрессора меньше по сравнению с аналогичной поршневой моделью

Недостатки


- Более сложны в изготовлении
- Высота компрессора больше, чем у аналогичного поршневого
- В верхней части кожуха содержится газ с высоким давлением и температурой
- Необходим сервисный вентиль на нагнетании
- Шумно работает при обратном вращении спирали
- Компрессор будет работать правильно только при одном направлении вращения спирали при подключении трехфазного компрессора необходимо соблюдать полярность

Поиск и устранение неисправностей компрессора

Дополнительные пункты сервисного обслуживания компрессора

- 1. Изоляция компрессора: Компрессор должен быть собран не позже, чем через 5 минут после снятия изоляционной крышки.
- 2. Соединения труб: При пайке трубных соединений не рекомендуется использовать флюс.
- 3. Остаточная влага: Необходимо следить за тем, чтобы влага не попала в смазку. Попадание влаги в смазку может вызвать много проблем.

LG Electronics